

Properties of Acids

□ Sour taste Change the color of indicators litmus - blue to red bromcresol - green to yellow phenolphthalein - rose to colorless React with metals to liberate hydrogen gas $\square 2HCl + Mg \rightarrow MgCl_2 + H_2$

Properties of Acids

□ React with basic metal oxides & hydroxides to form a salt & H₂O
 □ 2HBr + CuO(s) → CuBr₂ + 2H₂O
 □ React with salts of weaker or volatile acids to give a new salt and a new acid
 □ 2HClO₄ + FeS → H₂S + Fe(ClO₄)₂ + 2H₂O

Properties of Bases

Bitter taste
Change the color of indicators

litmus - red to blue
bromcresol - yellow to green
phenolphthalein - colorless to rose

Neutralize acids

Acid-Base Concepts: The Brønsted-Lowry Theory Arrhenius Acid: A substance that dissociates in water to produce hydrogen ions, H⁺.

 $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$

Arrhenius Base: A substance that dissociates in water to produce hydroxide ions, OH⁻.

 $MOH(aq) \rightleftharpoons M^+(aq) + OH^-(aq)$

Acid-Base Concepts: The Brønsted-Lowry Theory Brønsted-Lowry Acid: A substance that can transfer hydrogen ions, H⁺. In other words, a proton donor.

Brønsted-Lowry Base: A substance that can accept hydrogen ions, H⁺. In other words, a proton acceptor.

Copyright © 2010 Pearson Prentice Hall, Inc.

Conjugate Acid-Base Pairs: Chemical species whose formulas differ only by one hydrogen ion, H⁺.

Acid-Base Concepts: The Brønsted-Lowry Theory Acid-Dissociation Equilibrium

Acid-Base Concepts: The Brønsted-Lowry Theory Base-Dissociation Equilibrium

Acid Strength and Base Strength $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$ Acid Base Acid Base

With equal concentrations of reactants and products, what will be the direction of reaction?

Stronger acid + Stronger base → Weaker acid + Weaker base

Acid Strength

Strong acid: near 100% ionizationWeak acid: 10% or less ionization

Acid Strength and Base Strength Weak Acid: An acid that is only partially dissociated in

water and is thus a weak electrolyte.

	ə , .	
	Acid, HA	Base, A ⁻
Stronger acid	$ \begin{array}{c} \text{HClO}_4 \\ \text{HCl} \\ \text{H}_2\text{SO}_4 \\ \text{HNO}_3 \end{array} \end{array} \begin{array}{c} \textbf{Strong acids:} \\ 100\% \text{ dissociated} \\ \text{in aqueous} \\ \text{solution.} \end{array} $	$\begin{array}{c} ClO_4^{-} \\ Cl^{-} \\ HSO_4^{-} \\ NO_3^{-} \end{array} \end{array} \begin{array}{c} Very \ weak \ bases: \\ Negligible \ tendency \\ to \ be \ protonated \ in \\ aqueous \ solution. \end{array} Weaker \\ base$
	$H_{3}O^{+}$ HSO_{4}^{-} $H_{3}PO_{4}$ HNO_{2} HF $CH_{3}CO_{2}H$ $H_{2}CO_{3}$ $H_{2}S$ NH_{4}^{+} HCN HCO_{3}^{-} $H_{2}O$ $Weak acids:$ $Exist in solution$ $as a mixture of$ $HA, A^{-}, and H_{3}O^{+}.$	H ₂ O SO ₄ ²⁻ H ₂ PO ₄ - NO ₂ - F^- CH ₃ CO ₂ - HCO ₃ - HS ⁻ NH ₃ CN ⁻ CO ₃ ²⁻ OH ⁻ Weak bases: Moderate tendency to be protonated in aqueous solution.
Weaker acid	$ \begin{array}{c} \text{NH}_{3} \\ \text{OH}^{-} \\ \text{H}_{2} \end{array} \end{array} \begin{array}{c} \text{Very weak acids:} \\ \text{Negligible tendency} \\ \text{to dissociate.} \end{array} $	$ \begin{array}{c} \mathrm{NH_2}^- \\ \mathrm{O^{2-}} \\ \mathrm{H}^- \end{array} \end{array} \begin{array}{c} \textbf{Strong bases:} \\ 100\% \text{ protonated in} \\ \text{aqueous solution.} \end{array} \begin{array}{c} \textbf{Stronger} \\ \textbf{base} \end{array} $

 TABLE 14.1
 Relative Strengths of Conjugate Acid–Base Pairs

Hydrated Protons and Hydronium Ions

$HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$

Due to high reactivity of the hydrogen ion, it is actually hydrated by one or more water molecules.

For our purposes, H⁺ is equivalent to H₃O⁺.

Dissociation of Water:

 $2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

Dissociation of Water

Ion-Product Constant for Water: $K_w = [H_3O^+][OH^-]$

at 25°C: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$

So...

 $K_{\rm w} = (1.0 \text{ x } 10^{-7})(1.0 \text{ x } 10^{-7}) = 1.0 \text{ x } 10^{-14}$

Dissociation of Water $K_{\rm w} = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$

or

$$[OH^{-}] = \frac{K_{w}}{[H_{3}O^{+}]} = \frac{1.0 \times 10^{-14}}{[H_{3}O^{+}]}$$

Dissociation of Water

Copyright © 2010 Pearson Prentice Hall, Inc.

The pH Scale

Basic solution:pH > 7Neutral solution:pH = 7Acidic solution:pH < 7

$pH = -log[H_3O^+]$

and

 $[H_3O^+] = 10^{-pH}$

The hydronium ion concentration for lemon juice is approximately 0.0025. What is the pH when $[H_3O^+] = 0.0025$ M?

2 significant figures pH = -log(0.0025) = 2.6

Calculate the pH of an aqueous ammonia solution that has an OH⁻ concentration of 0.0019 M.

$$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.0019} = 5.3 \times 10^{-12} M$$

 $pH = -log(5.3 \times 10^{-12}) = 11.28$

Acid rain is a matter of serious concern because most species of fish die in waters having a pH lower than 4.5–5.0. Calculate $[H_3O^+]$ in a lake that has a pH of 4.5.

 $[H_3O^+] = 10^{-4.5} = 3.2 \text{ x } 10^{-5} \text{ M}$

Measuring pH

Acid-Base Indicator: A substance that changes color in a specific pH range. Indicators exhibit pH-dependent color changes because they are weak acids and have different colors in their acid (HIn) and conjugate base (In¹⁻) forms.

 $HIn(aq) + H_2O(l) \iff H_3O^{1+}(aq) + In^{1-}(aq)$ Color A Color B

Measuring pH

Measuring pH

The pH in Solutions of Strong Acids and Strong Bases What is the pH of a 0.025 M solution of HNO₃?

 $HNO_3(aq) + H_2O(l) \xrightarrow{100\%} H_3O^+(aq) + NO_3^-(aq)$

Since HNO₃ is a strong acid, $[H_3O^+] = [HNO_3]$.

 $pH = -log([H_3O^+]) = -log(0.025) = 1.60$

The pH in Solutions of Strong Acids and Strong Bases What is the pH of a 0.025 M solution of NaOH?

 $NaOH(aq) \longrightarrow Na^+(aq) + OH^{1-}(aq)$

Since NaOH is a strong base, $[OH^{1-}] = [NaOH].$ $[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} = \frac{1.0 \times 10^{-14}}{0.025} = 4.0 \times 10^{-13} \text{ M}$ $pH = -log([H_3O^+]) = -log(4.0 \times 10^{-13}) = 12.40$

Equilibria in Solutions of Weak Acids

$HA(aq) + H_2O(l) \implies H_3O^+(aq) + A^-(aq)$

Equilibria in Solutions of Weak Acids

The pH of 0.250 M HF is 2.036. What are the values of K_a and p K_a for hydrofluoric acid?

 $HF(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + F^-(aq)$

conc _i	0.250	行行的	≈0	0
change	-x	22月19日	+x	+x
conc _{eq}	0.250 - x		x	x

 $x = [H_3O^+] = 10^{-2.036} = 0.00920 \text{ M}$

Equilibria in Solutions of Weak Acids $K_a = \frac{[H_3O^+][F^-]}{[HF]}$

 $[F^{-}] = [H_3O^{+}] = 0.00920 \text{ M}$

[HF] = 0.250 - x = 0.250 - 0.00920 = 0.241 M

$$K_{\rm a} = \frac{[{\rm H}_{3}{\rm O}^{+}][{\rm F}^{-}]}{[{\rm H}{\rm F}]} = \frac{(0.00920)(0.00920)}{0.241} = 3.51 \times 10^{-4}$$
$$pK_{\rm a} = -\log(K_{\rm a}) = -\log(3.51 \times 10^{-4}) = 3.455$$

Calculating Equilibrium Concentrations for Weak Acids Calculate the pH of a 0.10 M HCN solution. At 25 °C, $K_a = 1.4 \times 10^{-9}$.

 $HCN(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + CN^-(aq)$

conc _i	0.10		≈0	0
change	-X		+X	+X
conc _{eq}	0.10 - x	1944	x	x

$$K_{\rm a} = \frac{[\rm H_3O^+][\rm CN^-]}{[\rm HCN]}$$

Calculating Equilibrium Concentrations for Weak Acids $1.4 \ge 10^{-9} = \frac{(x)(x)}{(0.10 - x)} \approx \frac{x^2}{0.10}$

 $x = [H_3O^+] = 1.2 \times 10^{-5} M$

 $pH = -log([H_3O^+]) = -log(1.2 \times 10^{-5}) = [4.9]$

Percent Dissociation in Solutions of Weak Acids

Percent dissociation =

[HA] dissociated [HA] initial x 100%

Copyright © 2010 Pearson Prentice Hall, Inc.

Classification of Acids

MonoproticDiproticTriprotic

Polyprotic Acids $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$ $K_{a1} = \frac{[H_3O^+] [HCO_3^-]}{[H_2CO_3]} = 4.3 \times 10^{-7}$

 $HCO_{3}(aq) + H_{2}O(l) \rightleftharpoons H_{3}O^{+}(aq) + CO_{3}(aq)$ $K_{a2} = \frac{[H_{3}O^{+}][CO_{3}(2)]}{[HCO_{3}(2)]} = 5.6 \times 10^{-11}$

Polyprotic Acids

TABLE 14.3Stepwise Dissociation Constants for Polyprotic
Acids at 25 °C

Formula	K _{a1}	K _{a2}	K _{a3}
H ₂ CO ₃	$4.3 imes 10^{-7}$	$5.6 imes 10^{-11}$	
H_2S	1.0×10^{-7}	$\sim 10^{-19}$	
$H_2C_2O_4$	5.9×10^{-2}	$6.4 imes 10^{-5}$	
H ₃ PO ₄	7.5×10^{-3}	$6.2 imes 10^{-8}$	4.8×10^{-13}
H_2SO_4	Very large	1.2×10^{-2}	
H_2SO_3	1.5×10^{-2}	$6.3 imes 10^{-8}$	
	Formula H_2CO_3 H_2S $H_2C_2O_4$ H_3PO_4 H_2SO_4 H_2SO_4 H_2SO_3	Formula K_{a1} H_2CO_3 4.3×10^{-7} H_2S 1.0×10^{-7} $H_2C_2O_4$ 5.9×10^{-2} H_3PO_4 7.5×10^{-3} H_2SO_4 Very large H_2SO_3 1.5×10^{-2}	Formula K_{a1} K_{a2} H_2CO_3 4.3×10^{-7} 5.6×10^{-11} H_2S 1.0×10^{-7} $\sim 10^{-19}$ $H_2C_2O_4$ 5.9×10^{-2} 6.4×10^{-5} H_3PO_4 7.5×10^{-3} 6.2×10^{-8} H_2SO_4 Very large 1.2×10^{-2} H_2SO_3 1.5×10^{-2} 6.3×10^{-8}

*Because of its very small size, K_{a2} for H_2S is difficult to measure and its value is uncertain.

Polyprotic Acids Calculate the pH of a 0.020 M H₂CO₃ solution. At 25 °C, $K_{a1} = 4.3 \times 10^{-7}$.

 $H_2CO_3(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + HCO_3^-(aq)$

conc _i	0.020	COM I	≈0	0
change	-x	11 Alex F	+X	+x
conc _{eq}	0.020 - x		x	x

$$K_{a1} = \frac{[H_3O^+][HCO_3^-]}{[H_2CO_3]}$$

Polyprotic Acids $4.3 \ge 10^{-7} = \frac{(x)(x)}{(0.020 - x)} \approx \frac{x^2}{0.020}$

 $x = [H_3O^+] = 9.3 \times 10^{-5} M$

 $pH = -log([H_3O^+]) = -log(9.3 \times 10^{-5}) = 4.0$

 $B(aq) + H_2O(l) \Longrightarrow BH^+(aq) + OH^-(aq)$

Base Acid Acid Base

Base-Dissociation Constant:

[BH⁺][OH⁻] [B]

 $K_{\rm b} =$

 $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

 $K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_3]}$

TABLE 14.4 K_b Values for Some Weak Bases and K_a Values for TheirConjugate Acids at 25 °C

Base	Formula, B	K _b	Conjugate Acid, BH ⁺	Ka
Ammonia	NH ₃	1.8×10^{-5}	NH_4 +	5.6×10^{-10}
Aniline	$C_6H_5NH_2$	4.3×10^{-10}	$C_6H_5NH_3^+$	2.3×10^{-5}
Dimethylamine	(CH ₃) ₂ NH	$5.4 imes 10^{-4}$	$(CH_3)_2NH_2^+$	1.9×10^{-11}
Hydrazine	N_2H_4	8.9×10^{-7}	N_2H_5 ⁺	1.1×10^{-8}
Hydroxylamine	NH ₂ OH	9.1×10^{-9}	NH ₃ OH ⁺	1.1×10^{-6}
Methylamine	CH ₃ NH ₂	3.7×10^{-4}	$CH_3NH_3^+$	2.7×10^{-11}

Calculate the pH of a 0.40 M NH₃ solution. At 25 °C, $K_b = 1.8 \times 10^{-5}$.

 $NH_3(aq) + H_2O(l) \Longrightarrow NH_4^+(aq) + OH^-(aq)$

conc _i	0.40	0	≈0
change	-X	+X	+x
conc _{eq}	0.40 - x	×	x

 $K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_3]}$

$$1.8 \ge 10^{-5} = \frac{(x)(x)}{(0.40 - x)} \approx \frac{x^2}{0.40}$$

 $x = [OH^{-}] = 0.0027 M$

 $[H_3O^+] = \frac{1.0 \times 10^{-14}}{0.0027} = 3.7 \times 10^{-12} \text{ M}$

 $pH = -log([H_3O^+]) = -log(3.7 \times 10^{-12}) = [11.4]$

Relation Between K_a and K_b $NH_4^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$ $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

 $2H_2O(l) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

Ka

K_b

 $K_{\rm w}$

 $= (5.6 \times 10^{-10})(1.8 \times 10^{-5}) = 1.0 \times 10^{-14}$

Relation Between K_a and K_b $K_a \ge K_b = K_w$

conjugate acid-base pair

 $pK_{a} + pK_{b} = pK_{w} = 14.00$

Acid-Base Properties of Salts

Acid-Base Properties of Salts Salts That Yield Neutral Solutions

The following ions do not react appreciably with water to produce either H_3O^+ or OH^- ions:

Cations from strong bases:

- Alkali metal cations of group 1a (Li⁺, Na⁺, K⁺)
- Alkaline earth metal cations of group 2a (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺), except for Be²⁺
- Anions from strong monoprotic acids:
 - Cl^- , Br^- , I^- , NO_3^- , and ClO_4^-

Acid-Base Properties of Salts Salts That Yield Acidic Solutions

Salts such as NH_4Cl that are derived from a weak base (NH_3) and a strong acid (HCl) yield acidic solutions.

 $NH_4^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NH_3(aq)$

Ammonium ion (NH_4^+) is the conjugate acid of the weak base ammonia (NH_3) while chloride ion (Cl^-) is neither acidic nor basic.

Acid-Base Properties of Salts

Salts That Yield Acidic Solutions

Hydrated cations of small, highly charged metal ions, such as Al³⁺.

Acid-Base Properties of Salts Salts That Yield Acidic Solutions

Hydrated cations of small, highly charged metal ions, such as Al³⁺.

Acid-Base Properties of Salts Salts That Yield Acidic Solutions

The acidity of hydrated main-group cations increases from left to right in the periodic table as the metal ion charge increases and the metal ion size decreases:

> $Li^+ < Be^{2+}$ Na⁺ < Mg^{2+} < Al^{3+}

Acid-Base Properties of Salts Salts That Yield Basic Solutions

Salts such as NaCN that are derived from a strong base (NaOH) and a weak acid (HCN) yield basic solutions.

 $CN^{-}(aq) + H_2O(l) \Longrightarrow HCN(aq) + OH^{-}(aq)$

Cyanide ion (CN^{-}) is the conjugate base of the weak acid hydrocyanic acid (HCN) while sodium ion (Na^{+}) is neither acidic nor basic.

Acid-Base Properties of Salts Salts That Contain Acidic Cations and Basic Anions

The pH of an ammonium carbonate solution, $(NH_4)_2CO_3$, depends on the relative acid strength of the cation and the relative base strength of the anion.

Is it acidic or basic?

Acid-Base Properties of Salts Salts That Contain Acidic Cations and Basic Anions (NH₄)₂CO₃:

 $NH_4^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NH_3(aq) \qquad K_a$ $CO_3^{2-}(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + OH^-(aq) \qquad K_b$

Three possibilities:

- $K_a > K_b$: The solution will contain an excess of H₃O⁺ ions (pH < 7).
- $K_a < K_b$: The solution will contain an excess of OHions (pH > 7).
- $K_a \approx K_b$: The solution will contain approximately equal concentrations of H₃O⁺ and OH⁻ ions (pH \approx 7).

Acid-Base Properties of Salts Salts That Contain Acidic Cations and Basic Anions (NH₄)₂CO₃:

 $NH_4^+(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + NH_3(aq) \qquad K_a$ $CO_3^{2-}(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + OH^-(aq) \qquad K_b$

$$K_{a} \text{ for NH}_{4}^{+} = \frac{K_{w}}{K_{b} \text{ for NH}_{3}} = \frac{1.0 \text{ x } 10^{-14}}{1.8 \text{ x } 10^{-5}} = 5.6 \text{ x } 10^{-10}$$
$$K_{b} \text{ for CO}_{3}^{2-} = \frac{K_{w}}{K_{a} \text{ for HCO}_{3}^{1-}} = \frac{1.0 \text{ x } 10^{-14}}{5.6 \text{ x } 10^{-11}} = 1.8 \text{ x } 10^{-4}$$

Basic, $K_{\rm a} < K_{\rm b}$

Acid-Base Properties of Salts

TABLE 14.5 Acid–Base Properties of Salts

Type of Salt	Examples	Ions That React with Water	pH of Solution
Cation from strong base; anion from strong acid	NaCl, KNO ₃ , BaI ₂	None	~7
Cation from weak base; anion from strong acid	NH ₄ Cl, NH ₄ NO ₃ , [(CH ₃) ₃ NH]Cl	Cation	<7
Small, highly charged cation; anion from strong acid	AlCl ₃ , Cr(NO ₃) ₃ , Fe(ClO ₄) ₃	Hydrated cation	<7
Cation from strong base; anion from weak acid	NaCN, KF, Na ₂ CO ₃	Anion	>7
Cation from weak base; anion from weak acid	NH ₄ CN, NH ₄ F, (NH ₄) ₂ CO ₃	Cation and anion	<7 if $K_a > K_b$ >7 if $K_a < K_b$ ~7 if $K_a \approx K_b$

Bond Polarity

Oxoacids

Oxyacids

Oxidation number of Cl

Lewis Acids and Bases

Lewis Acid: An electron-pair acceptor.

Lewis Base: An electron-pair donor.

Lewis acid Lewis base

Copyright © 2010 Pearson Prentice Hall, Inc.

Lewis Acids and Bases

