CHEM 1312 Practice Set Acids & Bases

- 1. (14.44) Give three examples of molecules or ions that are Brønsted-Lowry bases but not Arrhenius bases.
- 2. (14.46) Give the formula for the conjugate base of each of the following Brønsted-Lowry acids:

a.	HSO4 ⁻	d. H_2SO_3
b.	$H_2PO_4^-$	e. NH4 ⁺
c.	H ₂ O	f. NH ₃

3. (14.47) Give the formula for the conjugate base of each of the following Brønsted-Lowry bases:

a.	SO_3^{-2}	d. H ₂ O
b.	CH ₃ NH ₂	e. OH⁻
c.	HCO ₃ -	f. H⁻

- 4. (14.48) For each of the following reactions, identify the Brønsted-Lowry acids and bases and the conjugate acid-base pairs:
 - a. $CH_3CO_2H(aq) + NH_3(aq) \rightleftharpoons NH_4^+(aq) + CH_3CO_2^-$
 - b. $CO_3^{-2}(aq) + H_3O^+(aq) \rightleftharpoons H_2O(l) + HCO_3^{-}(aq)$
 - c. $HSO_3(aq) + H_2O(l) \rightleftharpoons H_3O(aq) + SO_3(aq)$
 - d. $HSO_3(aq) + H_2O(1) \rightleftharpoons H_2SO_3(aq) + OH(aq)$
- 5. (14.50) Determine from the following species, the strong acid or strong base in aqueous solution:
 - a. HNO_2 b. HNO_3 c. NH_4^+ d. $Cl^$ e. H^- f. O^{-2} g. H_2SO_4
- 6. (14.52) Of the conjugate acid-base pairs HF/F⁻, HCl/Cl⁻, and HCN/CN⁻, complete the following equation with the pair that gives an equilibrium $K_c > 1$.

$$+$$
 H₂PO₄ \Rightarrow $+$ H₃PO₄

7. (14.53) Of the conjugate acid-base pairs HSO_4^-/SO_4^{-2} , NH_4^+/NH_3 , and HNO_3/NO_3^- , complete the following equation with the pair that gives an equilibrium $K_c > 1$.

$$---+H_2S \rightleftharpoons ---+HS^-$$

- 8. (14.54) Arrange each group of compounds in order of increasing acid strength. Explain your reasoning.
 - a. HCl, H_2S , PH_3
 - b. NH₃, PH₃, AsH₃
 - c. HBrO, HBro₃, HBrO₄
- 9. (14.55) Arrange each group of compounds in order of decreasing acid strength. Explain your reasoning.
 - a. H_2O , H_2S , H_2Se
 - b. HClO₃, HBrO₃, HIO₃
 - c. PH₃, H₂S, HCl
- 10. (14.56) Identify the strongest acid in each of the following sets. Explain your reasoning.
 - a. H₂O, HF, or HCL
 - b. HClO₂, HClO₃, or HBrO₃
 - c. HBr, H_2S , or H_2Se
- 11. (14.57) Identify the weakest acid in each of the following sets. Explain your reasoning.
 - a. H_2SO_3 , $HClO_3$, or $HClO_4$
 - b. NH_3 , H_2O , or H_2S
 - c. $B(OH)_3$, $Al(OH)_3$, or $Ga(OH)_3$
- 12. (14.60) For each of the following equations, calculate [OH⁻] from [H₃O⁺], or [H₃O⁺] from [OH⁻]. Classify each solution as acidic, basic, or neutral.
 - a. $[H_3O^+] = 3.4 \times 10^{-9} M$
 - b. $[OH^{-}] = 1.0 \times 10^{-10} M$
- d. $[OH^{-}] = 0.010 \text{ M}$

- e. $[H_3O^+] = 1.0 \times 10^{-7} M$
- c. $[H_3O^+] = 8.6 \times 10^{-5} M$
- 13. (14.61) For each of the following equations, calculate $[OH^-]$ from $[H_3O^+]$, or $[H_3O^+]$ from [OH⁻]. Classify each solution as acidic, basic, or neutral.
 - a. $[H_3O^+] = 2.5 \times 10^{-4} M$ b. $[OH^{-}] = 5.6 \times 10^{-9} M$
- d. [H₃O⁺] = 2.0 M
 e. [OH⁻] = 1.5 X 10⁻³ M
- c. $[OH^{-}] = 1.0 \times 10^{-7} M$
- 14. (14.62) Water superheated under pressure to 200. °C and 750. atm has $K_w = 1.5 \times 10^{-11}$. Find $[H_3O^+]$ and $[OH^-]$ at 200. °C. Predict if the water is acidic, basic, or neutral.

15. (14.65) What is the pH to the correct number of significant figures for solutions with the following concentrations of H_3O^+ or OH^- :

a.	$[OH^{-}] = 7.6 \text{ X } 10^{-3} \text{ M}$		d. $[H_3O^+] = 1 \times 10^{-8} M$	Л	
b.	$[H_3O^+] = 5.0 \text{ M}$		e. $[OH^{-}] = 1.0 \times 10^{-7}$	М	
с.	$[H_3O^+] = 2.18 \text{ X } 10^{-10}$	Μ			
16. (14.66)	Calculate [H ₃ O ⁺] for so	olutions	having the following p	H	values:
a.	4.1	c. 10.8	82	e.	0.00
b.	14.25	d1.0)	f.	5.238
17. (14.67)	Calculate [H ₃ O ⁺] for so	olutions	having the following p	H	values:
a.	9.0	c. 7.00)	e.	-0.3
b.	15.18	d. 2.6	3	f.	10.756

- 18. (14.68) Predict the most appropriate indicator (thymol blue, alizarin yellow, chlorphenol red, or methyl orange) to detect the following pH changes:
 a. 7 to 5
 b. 8 to 10
 c. 3 to 5
- 19. (14.70) A solution of NaOH has a pH of 10.50. Calculate number of grams of CaO required to dissolve in sufficient water to make 1.00 L of a solution having the same pH.
- 20. (14.71) A solution of KOH has a pH of 10.00. Calculate number of grams of SrO required to dissolve in sufficient water to make 2.00 L of a solution having the same pH.
- 21. (14.72) Calculate the pH of solutions prepared by:
 - a. Dissolve 4.8 g of lithium hydroxide in water to give a 250. mL solution.
 - b. Dissolve 0.93 g of hydrogen chloride in water to give a 0.40 L solution.
 - c. Dilute 50.0 mL of 0.10 M HCl to 1.00 L.
 - d. Mix 100.0 mL of 2.0 X 10^{-3} M HCl and 400.0 mL of 1.0 X 10^{-3} M HClO₄ (Assume that volumes are additive).
- 22. (14.73) Calculate the pH of solutions prepared by:
 - a. Dissolve 0.20 g of sodium oxide in water to give a 100. mL solution.
 - b. Dissolve 1.26 g of pure nitric acid in water to give a 0.500 L solution.
 - c. Dilute 40.0 mL of 0.075 M $Ba(OH)_2$ to 300.0 mL.
 - d. Mix equal volumes of 0.20 M HCl and 0.50 M HNO₃ (Assume that volumes are additive).

- 23. (14.74) Look up the values of K_a in Appendix C for C₆H₅OH, HNO₃, CH₃CO₂H, and HOCl. Arrange these acids in order of:
 - a. Increasing strength
 - b. Decreasing percent dissociation
 - c. Estimate $[H_3O^+]$ in a 1.0 M solution for each acid
- 24. (14.77) Lactic acid ($C_3H_6O_3$), which occurs in sour milk and foods such as sauerkraut, is a weak monoprotic acid. The pH of a 0.10 M solution of lactic acid is 2.43. Determine the value for K_a .
- 25. (14.78) Acrylic acid ($C_3H_4O_2$) is used in the manufacture of paints and plastics. The pK_a of acrylic acid is 4.25.
 - a. Calculate the pH and the concentrations of all species (H₃O⁺, C₃H₃O_{2⁻}, C₃H₄O₂, and OH⁻) in 0.150 M acrylic acid.
 - b. Calculate the percent dissociation in 0.0500 M acrylic acid.