Organic Chemistry Aromaticity Practice Set

- 1. (14.1) Draw structural formulas of:
 - a. p-dinitrobenzene
 - b. *m*-bromonitrobenzene
 - c. o-chlorobenzoic acid
 - d. m-nitrotoluene
 - e. *p*-bromoaniline
 - f. *m*-iodophenol

- g. mesitylene (1,3,5-trimethylbenzene)
- h. 3,5-dinitrobenzenesulfonic acid
- i. 4-chloro-2,3-dinitrotoluene
- j. 2-amino-5-bromo-3-nitrobenzoic acid
- k. p-hydroxybenzoic acid
- 1. 2,4,6-trinitrophenol
- 2. (14.4) Give structures and names of all theoretically possible products of the ring mononitration of:
 - a. o-dichlorobenzene
 - b. *m*-dichlorobenzene
 - c. p-dichlorobenzene
 - d. *o*-bromochlorobenzene
 - e. *m*-bromochlorobenzene
 - f. *p*-bromochlorobenzene

- g. o-chloronitrobenzene
- h. m-chloronitrobenzene
- i. p-chloronitrobenzene
- i. 1,3,5-trimethylbenzene
- k. 4-bromo-1,2-dimethylbenzene
- 1. *p*-ethyltoluene
- 3. (14.6) Give structures and names of all benzene derivatives that *theoretically* can have the indicated number of isomeric ring-substituted derivatives.
 - a. C_8H_{10} : one monobromo derivative
- e. C₉H₁₂: two monobromo derivatives
- b. C₈H₁₀: two monobromo derivatives
- f. C₉H₁₂: three monobromo derivatives
- c. C₈H₁₀: three monobromo derivatives
- g. C₉H₁₂: four monobromo derivatives
- d. C₉H₁₂: one monobromo derivative
- 4. (14.10) The properties of pyrrole, commonly represented as:

Show that it is aromatic. Account for its aromaticity on the basis of orbital theory. (Hint: see sec. 14.10 and check your answer in sec. 30.2 of the 6th edition of *Organic Chemistry* by Morrison and Boyd.)