Nomenclature

Oxidation Numbers: A hypothetical charge based on the number of electrons each atom would have if all the electrons within a bond were located on the most

electronegative atom.

Rules for Determining Oxidation Numbers

- The oxidation number of an atom of a free element is zero.
- The oxidation number of a monatomic ion is equal to its charge.
- The algebraic sum of the oxidation numbers of the atoms in the formula of a compound is zero.
- The oxidation number of hydrogen is +1 except when combined with metals; it is then -1.
- The oxidation number of oxygen is -2.
- Combinations with nonmetals; the oxidation number of the less electronegative element is positive and that of the more electronegative element is negative.
- The algebraic sum of the oxidation numbers of the atoms in the formula of a polyatomic ion is equal to its charge.

Oxidation: An increase in the oxidation number for a given atom

Reduction: A decrease in the oxidation number of a given atom.

METALS & NONMETALS

- Name the positive metal
- Follow with the name of the negatively charged nonmetal
- Drop the ending of the nonmetal and replace with ide

An example: CaO Calcium oxide

Hydrogen & Nonmetals

- Use the name hydrogen
- Follow with the name of the nonmetal
- Drop the nonmetal's ending and replace with *ide*

An example: HCl Hydrogen chloride

METALS & POLYATOMIC IONS

- Name the positive metal
- Name the polyatomic ion

	Polyatomic Ions	
Charge	Name	Formula
+ 1	Ammonium	NH4+
- 1	Acetate	C ₂ H ₃ O ₂ -
- 1	Cyanide	CN ⁻
- 1	Dihydrogen phosphate	H₂PO₄ [−]
- 1	Hydrogen carbonate	HCO₃ [−]
- 1	Hydrogen sulfate	HSO₄ [−]
- 1	Hydroxide	OH-
- 1	Nitrate	NO₃ [−]
- 1	Nitrite	NO ₂ -
- 1	Perchlorate	CIO4-
- 1	Permanganate	MnO₄ [−]
- 2	Carbonate	CO ₃ 2-
- 2	Hydrogen phosphate	HPO ₄ 2-
- 2	Peroxide	0 ₂ 2-
- 2	Sulfate	SO ₄ 2-
-2	Sulfite	SO32-
- 3	Phosphate	P043-

The Chlorine Family of Polyatomic Ions

ClO-	Hypochlorite
ClO ₂ -	Chlorite
ClO ₃ -	Chlorate
ClO ₄ -	Perchlorate

An example: Zn(OH)₂ Zinc Hydroxide

Two Nonmetals

- Use the name of the most electropositive element first
- Follow with the name of the most electronegative element
- Use the ide ending for the most electronegative element
- With more than one combination, use Greek prefixes

Greek prefixes:

1 - mono	6 - hexa
2 - di	7 - hepta
3 - tri	8 - octa
4 - tetra	9 - nona
5 - penta	10- deca

An example:	PCl ₃	Phosphorous Trichloride	and	PCl ₅	Phosphorous Pentachloride
The energy of	- 0-5			1015	1 1105 1 1010 40 1 0 11 40 11 01 140

Binary Nitrogen-Oxygen Compounds

N_2O	dinitrogen monoxide
NO	nitrogen monoxide
N_2O_3	dinitrogen trioxide
NO_2	nitrogen dioxide
N ₂ O ₅	dinitrogen pentoxide

Metals with more than one oxidation number & nonmetals

- Using Roman Numerals
 - \Box Use the name of the metal
 - Use Roman Numerals in parenthesis to give the oxidation number of the metal
 - \Box Use the name of the nonmetal
 - Use the <u>ide</u> ending with the nonmetals

FeCl₃ Iron (III) Chloride and FeCl₂ Iron (II) Chloride

- Using latin names
 - Give the latin name root for the metal
 - For the lower oxidation state use the <u>ous</u> suffix
 - For the higher oxidation state use the <u>ic</u> suffix
 - \Box Use the name of the nonmetal
 - $\Box \quad \text{Add the } \underline{ide} \text{ ending to the nonmetal}$

FeCl₃ Ferric Chloride and FeCl₂ Ferrous Chloride

Old system		New system	
chromic	Cr***	chromium(III)	Cr+++
cobaltous	Co++	cobalt(II)	Cott
cobaltic	Co+++	cobalt(III)	Co+++
ferrous	Fe ⁺⁺	iron(II)	Fe ⁺⁺
ferric	Fe+++	iron(III)	Fe*+*
cuprous	Cu*	copper(I)	Cu ⁺
cupric	Cu++	copper(II)	Cu ⁺⁺
mercurous	Hg ⁺	mercury(I)	Hga++
mercuric	Hg ⁺ Hg ⁺⁺	mercury(II)	Hg2 ⁺⁺ Hg ⁺⁺ Pb ⁺⁺
plumbous	Ph ⁺⁺	lead(II)	Pb++
plumbic	Pb++++	lead(IV)	Pb+++
stannous	Sn ⁺⁺	tin(II)	Sn**
stannic	Sn****	tin(IV)	Sn+++

Binary Acids

- Use the prefix of <u>hydro</u>
- Use the root from the parent element
- Add the <u>ic</u> ending
- Complete with the word acid

HCl_(aq) Hydrochloric Acid

Oxyacids

- Use the root of the name of the polyatomic ion from which the acid is derived
- Use the appropriate suffix
 - \Box <u>ic</u> is used if the polyatomic ion ends in <u>ate</u>
 - \Box ous is used if the polyatomic ion ends in ite
- Complete with the word acid

H₂SO₄ Sulfuric Acid and H₂SO₃ Sulfurous Acid

The Family of Acids Containing Chlorine

HCl	Hydrochloric
HCI	Hydrochloric

- HClO Hypochlorous
- HClO₂ Chlorous
- HClO₃ Chloric
- HClO₄ Perchloric

Metals

- React with elemental nonmetals
- Form oxides that, if soluble, react with water to give hydroxides
- Form basic hydroxides
- React with hydrogen to form binary hydrides

- React with other metals forming metallic compounds
- Exhibit lower electronegativity values
- Readily form cations by loss of electrons
- Good conductors of heat & electricity
- Malleable & ductile
- Metallic luster

Nonmetals

- Form oxides that may react with water to give acids
- Form acidic hydroxides (oxyacids)
- React with nonmetals to form covalent compounds
- React with metals to form ionic compounds
- Form binary hydrides, which may be acidic
- Exhibit higher electronegativity values
- Readily form anions by accepting electrons to fill the outermost shell
- Poor conductors of heat & electricity
- Brittle
- Dull in appearance

Metalloids: Elements which have characteristics that resemble both metals and nonmetals