CHEM 1311 Practice Problems Stoichiometry

- 1. (6.44) Calculate the molecular masses of the following substances:
 - a. Hg_2Cl_2 b. $C_4H_8O_2$ (butyric acid, responsible for the odor of rancid butter)
 - $c. \quad CF_2Cl_2$
- 2. (6.45) What are the formulas of the following substances?
 - a. PCl₂; mol mass = 137.3 b. Nicotine, $C_{10}H_{14}N_{2}$; mol mass = 162.2
- 3. (6.46) Determine the molecular masses of the following pharmaceuticals:
 - a. $C_{33}H_{35}FN_2O_5$ (atorvastatin, lowers blood cholesterol)
 - b. C₂₂H₂₇F₃O₄S (fluticasone, anti-inflammatory)
 - c. C₁₆H₁₆ClNO₂S (clopidogrel, inhibits blood clots)
- 4. (6.47) Calculate the molecular masses of the following herbicides:
 - a. C₆H₆Cl₂O₃ (2,4-dichlorophenpxyacetic acid, effective on broadleaf plants)
 - b. C₁₅H₂₂ClNO₂ (metolachlor, pre-emergent herbicide)
 - c. C₈H₆Cl₂O₃ (dicamba, effective on broadleaf plants)
- 5. (6.48) Find the mass in grams that are in a mole of each of the following substances:
 - a. Ti b. Br₂ c. Hg d. H₂O
- 6. (6.52) Calculate the molecular mass of chloroform if 0.0275 mol has a mass of 3.28 g.
- 7. (6.53) Obtain the molecular mass of cholesterol if 0.5731 mol has a mass of 221.6 g.
- 8. (6.54) Iron (II) sulfate, FeSO₄, is prescribed for the treatment of anemia. How many moles of FeSO₄ are present in a standard 300 mg tablet?
- 9. (6.55) The "lead" in pencils is almost pure carbon, and the mass of a period mark made by a lead pencil is about 0.0001 g. Determine the number of carbon atoms that are in the period.

- 10. (6.56) An average cup of coffee contains about 125 mg of caffeine, $C_8H_{10}N_4O_2$. Calculate the number of moles of caffeine that are in a cup. Calculate the number of caffeine molecules that are in a cup.
- 11. (6.60) Titanium metal is obtained from the mineral rutile, TiO₂. Find how many kilograms of rutile are needed to produce 100.0 Kg of Ti.
- 12. (6.61) Iron metal can be produced from the mineral hematite, Fe₂O₃, by the reaction with carbon. Calculate the mass in kilograms of iron present in 105 Kg hematite.
- 13. (6.62) In the preparation of iron from hematite, Fe_2O_3 reacts with carbon according to the following equation: $Fe_2O_3 + C \rightarrow Fe + CO_2$
 - a. Balance the equation.
 - b. Determine the number moles of carbon needed to react with 525 g of hematite.
 - c. Determine the mass in grams of carbon needed to react with 525 g of hematite.
- 14. (6.64) Magnesium metal burns in oxygen to form magnesium oxide, MgO.
 - a. Balance the equation.
 - b. Determine the mass in grams of oxygen needed to react with 25.0 g of Mg.
 - c. From (b) Determine the mass in grams of MgO produced.
 - d. Calculate the mass in grams of Mg that are needed to react with $25.0 \text{ g of } O_2$.
 - e. From (d) Determine the mass in grams of MgO produced.
- 15. (6.65) Ethylene gas, C_2H_4 , reacts with water at high temperature to yield ethyl alcohol, C_2H_6O .
 - a. Calculate the mass in grams of ethylene needed to react with $0.133 \text{ mol of } H_2O$.
 - b. Determine the mass in grams of water needed to react with 0.371 mol of ethylene.

heat

- 16. (6.66) Pure oxygen was first made by heating mercury (II) oxide: $HgO \rightarrow Hg + O_2$
 - a. Balance the equation
 - b. Determine the mass in grams of mercury and how many grams of oxygen formed from 45.5 g of HgO.
 - c. Calculate the mass in grams of HgO would be needed to obtain 33.3 g O_2 .
- 17. (6.67) Titanium dioxide (TiO₂), the substance used as the pigment in white paint, is prepared industrially by the reaction of TiCl₄ with O_2 at high temperature.

$$TiCl_4 + O_2 \xrightarrow{heat} TiO_2 + 2Cl_2$$

Determine the mass in kilograms of TiO₂ prepared from 5.60 Kg TiCl₄.

- 18. (6.68) Silver metal reacts with chlorine (Cl₂) to yield silver chloride. Providing 2.00 g of Ag reacts with 0.657 g Cl₂, Obtain the empirical formula of silver chloride.
- 19. (6.69) Aluminum reacts with oxygen to yield aluminum oxide. Providing 5.0 g of Al reacts with 4.45 g of O₂, calculate the empirical formula of aluminum oxide.

- 20. (6.70) The industrial production of hydriodic acid takes place by the treatment of iodine with hydrazine (N₂H₄) according to the following equation: $2I_2 + N_2H_4 \rightarrow 4HI + N_2$
 - a. Determine the mass in grams of I_2 required to react with 36.7 g of N_2H_4 .
 - b. Determine the mass in grams of HI produced by the reaction of 115.7 g of N_2H_4 with excess iodine.
- 21. (6.71) An alternative method for production of hydriodic acid is the reaction of iodine with hydrogen sulfide according to the following equation: $H_2S + I_2 \rightarrow 2HI + S$
 - a. Determine the mass in grams of I_2 required to react with 49.2 g of H_2S .
 - b. Determine the mass in grams of HI produced by the reaction of 95.4 g of H_2S with excess I_2 .
- 22. (6.86) An unknown liquid is composed of 5.57% H, 28% Cl, and 66.42% C. The molecular mass is 126.58. Give the molecular formula of this compound.
- 23. (6.87) An unknown liquid is composed of 34.31 % C, 5.28% H, and 60.41 % I. The molecular mass is 210.07. Discover the molecular formula.
- 24. (6.88) Calculate the empirical formula of stannous fluoride, the first fluoride compound added to toothpaste to protect teeth against decay. Its mass percent composition is 24.25% F and 75.75% Sn.
- 25. (6.89) Determine the empirical formulas of each of the following:
 - a. Ibuprofen, a headache remedy: 75.69% C, 15.51% O, 8.80% H
 - b. Magnetite, a naturally occurring magnetic mineral: 72.36% Fe, 27.64% O
 - c. Zircon, a mineral from which cubic zirconia is made: 34.91% O, 15.32% Si, 49.77% Zr
- 26. (6.90) Combustion analysis of 45.62 mg of toluene, a commonly used solvent, gives 35.67 mg of H₂O and 152.5 mg CO₂. Calculate the empirical formula for toluene.
- 27. (6.99) The stimulate amphetamine contains only carbon, hydrogen, and nitrogen. Combustion analysis of a 42.92 g sample of amphetamine gives 37.187 mg H₂O and 125.75 mg CO₂. Providing the molar mass of amphetamine is less than 160 g/mol, determine the molecular formula.
- 28. (6.72) Assume that you have 1.39 mol of H₂ and 3.44 mol of N₂. How many grams of ammonia (NH₃) can be made, and how many grams of which reactant will be left over?
 3H₂ + N₂ → 2NH₃
- 29. (6.73) Hydrogen and chlorine react to yield hydrogen chloride: $H_2 + Cl_2 \rightarrow 2HCl$

Determine the mass in grams of HCl formed from reacting 3.56 g H₂ with 8.94 g Cl₂. Determine the limiting reactant.

- 30. (6.76) Nickel (II) sulfate, used for nickel plating, is prepared by treatment of nickel (II) carbonate with sulfuric acid: NiCO₃ + H₂SO₄ → NiSO₄ + CO₂ + H₂O Determine the number of grams NiSO₄ needed to react with 14.5 g of NiCO₃.
- 31. (6.77) Hydrazine, N₂H₄, once used as a rocket propellent, with oxygen: $N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$ Calculate the grams of O₂ required to react with 50.0 g of N₂H₄.
- 32. (6.100) Determine the number of moles of solute present in each of the following solutions:(a) 35.0 mL of 1.200 M HNO₃
 - (b) 175 mL of 0.67 M glucose (C₆H₁₂O₆)
- 33. (6.101) In preparing each of the following solutions, find the mass of solute needed:
 - (a) 250.0 mL of 0.600 M ethyl alcohol (C_2H_6O)
 - (b) 167 mL of 0.200 M boric acid (H₃BO₃)
- 34. (6.102) Determine the volume in mL of a 0.350 M KOH solutions containing 0.0171 mol of KOH.
- 35. (6.105) The concentration of glucose ($C_6H_{12}O_6$) in normal blood is approximately 90 mg per 100 mL. Calculate the molarity of blood glucose.