

1 H																	2 He
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											A1	Si	Р	S	Cl	Aı
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rr
87	88	103	104	105	106	107	108	109	110	111	112		114		116		1
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg			<u> </u>				
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	N
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	

Copyright © 2010 Pearson Prentice Hall, Inc.

Louis de Brogile -- 1924

- French
- Combined the equations of Einstein and Planck to suggest that electrons have a wave nature

$$\lambda = \frac{h}{mv}$$

Wave/Particle Duality

- Light was originally viewed as waves, since it displays diffraction and interference properties. But, it also acts like particles, called *photons* (hv), in some ways.
- Electrons were originally viewed as particles, with a finite mass. But they have interference and can diffract, so they have wavelike properties too.
- de Broglie wavelength:

 $\lambda = h/mv$

where λ = wavelength, h = Planck's constant (6.626 x 10⁻³⁴ J•s), m = mass, v = velocity

When an electron falls from a higher-energy outer-shell orbital to a lower-energy inner-shell orbital, it emits electromagnetic energy whose frequency corresponds to the energy difference between the orbitals. The different spectral series correspond to electronic transitions from outer-shell orbitals to different inner-shell orbitals.

Wolfgang Pauli

Wolfgang Pauli -- 1925

German

 Determined that no two electrons in the same atom can have exactly the same energy (same set of quantum numbers)
 Pauli Exclusion Principle

Erwin Schrodinger

Erwin Schrodinger -- 1926

- Austrian
- Developed a mathematical expression called a wave function (Ψ)
- Developed the concept of an orbital
- Evaluations of Y have lead to specifics such as:

Schrodinger: A Wave Equation for Electrons

.. The Free-Particle Schrodinger Wave Equation !

Erwin Schrödinger (1887-1961) Image in the Public Domain

- distance from the nucleus
 orbital shape
- energy of an electron within a given orbital
- probability of finding an electron within some region of an orbital

Radial probability $(4\pi r^2 \psi^2)$

(A)

Werner Heisenberg

Werner Heisenberg -- 1927

German

 Determined that the exact position and momentum of an electron cannot be determined simultaneously
 Heisenberg Uncertainty Principle

Quantum Mechanics Conclusions

- The exact location of an electron <u>cannot</u> be determined.
- The energy of an electron is limited to discrete values.
- Orbitals are characterized by the principal quantum number (n).

- Orbital shapes are distinguished by a second quantum number, the azimuthal (angular-momentum) quantum number (l).
- Orbitals having the same azimuthal quantum number differ in their orientation about the nucleus. This orientation is characterized by the magnetic quantum number (m).

- Electrons within an orbital can rotate clockwise or counterclockwise. The direction of spin is specified by the spin quantum number (s).
- The maximum number of electrons that may be found in a shell of principal quantum number n is 2n².

Allowed Combinations of Quantum Numbers n, l, and m_l for the First Four Shells

n	1	m_l	Orbital Notation	Number of Orbitals in Subshell	Number of Orbitals in Shell		
1	0	0	1s	1	1		
2	0	0	2s	1	4		
	1	-1, 0, +1	2 <i>p</i>	3	4		
3	0	0	3 <i>s</i>	1			
	1	-1, 0, +1	3 <i>p</i> 3		9		
	2	-2, -1, 0, +1, +2	3 <i>d</i>	5			
4	0	0	4s	1			
	1	-1, 0, +1	4p	3	16		
	2	-2, -1, 0, +1, +2	4d	5	10		
	3	-3, -2, -1, 0, +1, +2, +3	4f	7			

Copyright © 2010 Pearson Prentice Hall, Inc.

The "s" Orbital

The "p" orbital

The "d" Orbital

The "f" Orbital

Frederick Hund -- 1927

- German
- Determined that subshells will first fill singly with parallel spins
- Once half filled, subshells will then doubly fill
- Hund's Rule

James Chadwick -- 1932

- British
- Identified the neutron
- Particles have no charge
- Mass of 1.0087 amu or 1.675 X 10⁻²⁷Kg
- Unstable outside of the nucleus
 - Disintegrates into a proton and an electron

 ${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \longrightarrow$ ${}^{12}_{6} C + {}^{1}_{0} n + h v$

DISCOVERY OF NEUTRON

Nucleons

The total of all nuclear particles. Includes both protons & neutrons.

Subshell electron capacity

Copyright © 2010 Pearson Prentice Hall, Inc.

Copyright © 2010 Pearson Prentice Hall, Inc.

Copyright © 2010 Pearson Prentice Hall, Inc.

Orbital Notation

 $\downarrow \uparrow \downarrow \uparrow \downarrow$ $\uparrow \uparrow \uparrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ ls 2sB - -<u>2p</u> 1s 2s 2p $\downarrow \uparrow \downarrow \uparrow$ \uparrow $\uparrow\downarrow$ \uparrow \uparrow \uparrow *C*— $\frac{1}{1s}$ $\frac{1}{2s}$ **2**p 1s 2s 2p

Electron Configuration

$H \quad 1s^1 Li \quad 1s^2 \quad 2s^1$

He $1s^2 Be 1s^2 2s^2$

Electron Configuration

 $B \, ls^2 2s^2 \mathcal{D} \, ls^2 \, 2s^2 2p^4$ $C 1s^2 2s^2 2p^2 1s^2 2s^2 2p^5$ $N I s^2 2 s^2 2 N e^2 1 s^2 2 s^2 2 p^6$

Electron Dot Notation

Arrangement of Electrons

Li Be B С N 0 F Ne

 $1s^2 2s^1 = [\text{He}] 2s^1$ $[He]2s^2$ $[\text{He}]2s^22p^1$ $[\text{He}]2s^22p^2$ $[\text{He}]2s^22p^3$ $[He]2s^22p^4$ $[\text{He}]2s^22p^5$ $[\text{He}]2s^22p^6$

Na Mg Al Si P S Cl Ar

 $[Ne]3s^1$ $[Ne]3s^2$ $[Ne]3s^23p^1$ $[Ne]3s^23p^2$ $[Ne]3s^23p^3$ $[Ne]3s^23p^4$ $[Ne]3s^23p^5$ $[Ne]3s^23p^6$

K Ca Sc Ti V Cr Mn Fe Co

 $[Ar] 4s^1$ Ni [Ar] 4s² Cu $[Ar] 4s^2 3d Zn$ [Ar] 4s²3dGa [Ar] 4s²3dGe [Ar] 4s¹3d As [Ar] 4s²3d Se $[Ar] 4s^2 3d Br$ $[Ar] 4s^2 3d Kr$

[Ar] 4s²3d⁸ [Ar] 4s¹3d¹⁰ [Ar] 4s²3d¹⁰ [Ar] 4s²3d¹⁰4p¹ [Ar] $4s^23d^{10}4p^2$ [Ar] $4s^23d^{10}4p^3$ [Ar] $4s^23d^{10}4p^4$ [Ar] $4s^23d^{10}4p^5$ [Ar] 4s²3d¹⁰4p⁶

 $[Kr]5s^{1}$ Pd $[Kr]5s^2$ Ag $[Kr]5s^24d^1$ Cd $[Kr]5s^24d^2$ In $[Kr]5s^{1}4d^{4}$ Sn $[Kr]5s^{1}4d^{5}$ Sb $[Kr]5s^{1}4d^{6}$ Te $[Kr]5s^{1}4d^{7}$ $[Kr]5s^{1}4d^{8}$ Xe

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

 $[Kr]4d^{10}$ $[Kr]5s^{1}4d^{10}$ $[Kr]5s^24d^{10}$ $[Kr]5s^24d^{10}5p^1$ $[Kr]5s^24d^{10}5p^2$ $[Kr]5s^24d^{10}5p^3$ $[Kr]5s^24d^{10}5p^4$ $[Kr]5s^24d^{10}5p^5$ $[Kr]5s^24d^{10}5p^6$

 $[Kr]5s^{1}$ Pd $[Kr]5s^2$ Ag $[Kr]5s^24d^1$ Cd $[Kr]5s^24d^2$ In $[Kr]5s^{1}4d^{4}$ Sn $[Kr]5s^{1}4d^{5}$ Sb $[Kr]5s^{1}4d^{6}$ Te $[Kr]5s^{1}4d^{7}$ $[Kr]5s^{1}4d^{8}$ Xe

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

 $[Kr]4d^{10}$ $[Kr]5s^{1}4d^{10}$ $[Kr]5s^24d^{10}$ $[Kr]5s^24d^{10}5p^1$ $[Kr]5s^24d^{10}5p^2$ $[Kr]5s^24d^{10}5p^3$ $[Kr]5s^24d^{10}5p^4$ $[Kr]5s^24d^{10}5p^5$ $[Kr]5s^24d^{10}5p^6$

 $[Xe]6s^24f^{10}$ $[Xe]6s^1$ 55 Cs 66 Dy $[Xe]6s^24f^{11}$ $[Xe]6s^2$ 67 56 Ba Ho $[Xe]6s^{2}5d^{1}$ $[Xe]6s^24f^{12}$ 57 La 68 Er $[Xe]6s^24f^{13}$ $[Xe]6s^{2}4f^{2}$ 58 Ce 69 Tm $[Xe]6s^24f^{14}$ $[Xe]6s^{2}4f^{3}$ **59** Pr 70 Yb $[Xe]6s^24f^{14}5d^1$ $[Xe]6s^{2}4f^{4}$ **60** Nd 71 Lu $[Xe]6s^24f^5$ $[Xe]6s^24f^{14}5d^2$ 61 Pm Hf 72 $[Xe]6s^{2}4f^{6}$ 62 Sm $[Xe]6s^24f^{14}5d^3$ 73 Ta $[Xe]6s^24f'$ 63 Eu $[Xe]6s^24f^{14}5d^4$ W 74 $[Xe]6s^{2}4f^{7}5d$ 64 Gd $[Xe]6s^24f^{14}5d^5$ 75 Re $[Xe]6s^{2}4f^{9}$ 65 Tb $[Xe]6s^24f^{14}5d^6$ 76 Os

 $[Xe]6s^24f^{14}5d^7$ $[Xe]6s^{1}4f^{14}5d^{9}$ $[Xe]6s^{1}4f^{14}5d^{10}$ $[Xe]6s^24f^{14}5d^{10}$ $[Xe]6s^24f^{14}5d^{10}6p^1$ $[Xe]6s^24f^{14}5d^{10}6p^2$ • $[Xe]6s^24f^{14}5d^{10}6p^3$ $[Xe]6s^24f^{14}5d^{10}6p^4$ $[Xe]6s^24f^{14}5d^{10}6p^5$ $[Xe]6s^24f^{14}5d^{10}6p^6$

97 Bk 87 $[Rn]7s^{1}$ Fr $[Rn]7s^2$ 98 Cf 88 Ra $[\operatorname{Rn}]7s^26d^1$ 99 Es 89 Ac $[Rn]7s^26d^2$ 100 Fm 90 Th $[Rn]7s^25f^26d^1$ Md 101 91 Pa $[Rn]7s^25f^36d^1$ 102 No 92 U $[\text{Rn}]7s^25f^46d^1$ Lr 103 93 Np Rf $[Rn]7s^25f^6$ 104 94 Pu $[Rn]7s^25f^7$ 105 Ha 95 Am 106 $[Rn]7s^25f^76d^1$ Sg 96 Cm

 $[Rn]7s^{2}5f^{8}6d^{1}$ $[Rn]7s^25f^{10}$ $[Rn]7s^25f^{11}$ $[Rn]7s^25f^{12}$ $[Rn]7s^25f^{13}$ $[Rn]7s^{2}5f^{14}$ $[Rn]7s^{2}5f^{14}6d^{1}$ $[\text{Rn}]7s^25f^{14}6d^2$ $[\text{Rn}]7s^25f^{14}6d^3$ $[Rn]7s^25f^{14}6d^4$

 $[\text{Rn}]7s^25f^{14}6d^5$ 107 $[Rn]7s^25f^{14}6d^6$ 108 Hs $[Rn]7s^25f^{14}6d^7$ 109 Mt $[Rn]7s^25f^{14}6d^8$ 110 Uun $[Rn]7s^25f^{14}6d^9$ Uuu $[Rn]7s^25f^{14}6d^{10}$ Uub 12

Atomic Radii of the Elements

Copyright © 2010 Pearson Prentice Hall, Inc.

