

Molecular Structure

The three-dimensional arrangement of the atoms comprising a molecule

Molecular Structure

Bond Angle

 The angle between any two bonds that include a common atom.

Bond Distance

• The distance between the nuclei of two bonded atoms.

Valence Shell Electron Pair Repulsion Theory

Predicting Molecular Structures

Number of Regions	Spatial Arrangement	Electron-Pair Geometry
Two regions of high electron density (bonds and/or unshared pairs)		Linear. 180° angle.
Three regions of high electron density (bonds and/or unshared pairs)		Trigonal planar. All angles 120°.
Four regions of high electron density (bonds and/or unshared pairs)	109.5*	Tetrahedral. All angles 109.5°.
Five regions of high electron density (bonds and/or unshared pairs)	90 [*] 120 [*]	Trigonal bipyramidal. Angles of 90° or 120°. An attached atom may be equatorial (in the plane of the triangle) or axial (above or below the plane of the triangle).
Six regions of high electron density (bonds and/or unshared pairs)	90 [°]	Octahedral. All angles 90° or 180°.

Bonding & Nonbonding Electron Pairs

The presence of unshared electron pairs affect molecular structure.

Electron pair geometry: Geometry which includes all electron pairs.

Molecular geometry: The structure that includes only the placement of atoms in the molecule.

Structures are the same if there are no unshared pairs.

Bonding & Nonbonding Electron Pairs

Structures differ with unshared pairs. Both shared (bonding) and unshared (nonbonding) electron-pairs form regions of high electron density. Electrostatic repulsion pushes these electron dense regions as far apart as possible.

Small distortions may occur due to differences in electrostatic strengths.

Regions of High Electron Density (bonds and unshared pairs.)

Molecular Geometries and Examples (chemical bonds are indicated in black, unshared pairs in red)

Rules for Predicting Electron-Pair and Molecular Geometry

Draw the Lewis Structure
Determine the number of regions of high electron density
Determine the most stable arrangement
Identify the molecular structure

Rules for Predicting Electron-Pair and Molecular Geometry

Draw the Lewis Structure
Determine the number of regions of high electron density
Determine the most stable arrangement
Identify the molecular structure

Molecular Polarity

Polar molecules: Any molecule having one positive and one negative end.
 Polar molecules occur due to the formation of polar bonds.

- Positive end: σ +
- Negative end: σ –

Dipole moment: A measure of the polarity of a molecule.

Valence Bond Theory

Hybridization of Atomic Orbitals

Orbital overlap: A portion of two orbitals overlapping the same region of space A covalent bond in which the electron density is concentrated in the region between the two nuclei

Sigma Bonds $(\sigma \text{ bonds})$

A covalent bond in which the electron dense regions overlap above and below the internuclear axis

Increasing energy -

Hybridization

The mixing of atomic orbitals of an isolated atom to form hybrid orbitals

Sp Hybridization

Sp Hybridization

Sp² Hybridization

Sp² Hybridization

Sp³ Hybridization

Sp³ Hybridization

Sp³d Hybridization

Sp³d Hybridization

Sp³d ²Hybridization

Sp³d² Hybridization

Assigning Hybrid Orbitals

Determine the Lewis structure
 Determine the electron-pair geometry
 Assign a set of hybridized orbitals

Assigning Hybrid Orbitals

Determine the Lewis structure
 Determine the electron-pair geometry
 Assign a set of hybridized orbitals

Remember!!! Only sigma bonds form hybrid orbitals

Electron Density	Regions of Arrangement Hybridizatio Electron Density			
2	Linear	sp	180 [*] M	
3	Trigonal planar	sp²	120°	
4	Tetrahedral	sp ³	109.5 M	
5	Trigonal bipyramidal	sp³d	90°	
6	Octahedral	sp³d²	90°	

Hybridization Involving Double & Triple Bonds

 (A)

(B)

