Chemical Bonding

Ionic Bond: Results from the transfer of one or more electrons from one atom to another.

Electrostatic attractions between ions Increase charge – remove an electron Decrease charge – add an electron

Ions: atoms which have an electrical charge

Cations - forms when a neutral atom loses one or more valence electrons

Anions - forms when a neutral atom gains one or more valence electrons

Ionic Compounds are formed by ionic bonds Usually form between a metal and nonmetal Tend to form noble gas(octet) electron configurations Lattice energy - The energy required to separate exactly 1 mole of the solid into its component gaseous ions.

Valence Electrons: The electrons in the outer most orbital of an atom. It is the loss, gain, or sharing of **valence** electrons that determines how elements react.

Ionization Energy X + energy \rightarrow X⁺ + e⁻

Electron Affinity $X + e^- \rightarrow X^- + energy$

Electron Configurations of Ions & Lewis Structures of Ionic Compounds

Covalent Bonds: A bond resulting from the sharing of electrons (usually two). Forms a molecule

The unit of matter resulting from atoms joined by covalent bonds.

Covalent Bonding

Sharing of valence electrons due to an overlapping of singlet orbitals.Usually occur between nonmetals.Forms a strong bond holding atoms together to form single units called molecules.Types of bonds: single, double, & triple

Electronegativity: A measure of the attraction of an atom for the electrons in a chemical bond. (Developed by Linus Pauli)

Electronegativity Differences between Bonding Atoms

0 – 5% ... pure covalent 5 – 50% - polar covalent 50 – 100% - ionic

Lewis Structures (Electron-Dot)

- Determine the total number of valence electrons in the molecule or ion
 - 1. Molecules: add the number of valence electrons on each atom in the molecule
 - 2. Anions: add the number of valence electrons on the atoms in the ion and the number of negative charges on the ion
 - 3. Cations: add the number of valence electrons on the atoms in the ion and then subtract the number of positive charges on the ion
- Draw a skeleton of the molecule or ion, showing the arrangement of atoms, and connect each atom to another with a single bond.
- Deduct the 2 valence electrons for each bond.
- Distribute the remaining electrons as unshared pairs so that each atom has 8 electrons if possible.

Lewis Structures (know how to draw)

Noble Gas Configuration vs non-Noble Gas Configuration Oxidation State (Number) or Valence Number: A hypothetical charge an atom would have if the electrons in each bond were located on the **more** electronegative atom.

Resonance: If two or more Lewis structures with the same arrangement of atoms can be written for a molecule or ion, then the actual electron distribution is an average of that shown by the various Lewis structures.

Bond Dissociation Energy: The energy required to break a specific covalent bond in exactly 1 mole of gaseous molecules.

Calculation of Enthalpy Change

$$\Delta H = \sum D_{bonds \ broken} - \sum D_{bonds \ formed}$$

Single Bonds											
H 436	C 415 345	N 390 290 160	0 464 350 200 140	F 569 439 270 185 160	Si 395 360 370 540 230	P 320 265 210 350 489 215 215	S 340 260 285 225 230 215	Cl 432 330 200 205 255 359 330 250 243	Br 370 275 245 235 290 270 215 220 190	 295 240 200 215 215 215 210 180 150	нсхоғぶрめ <mark>О</mark> 路–
Multiple Bonds											
C = C C = C	, 611 , 837	C = C =	•N, 6 •N, 8	615 891	C = O, C ≡ O,	741 1080	N = N =	N, 41 N, 94	18 C 16) = (),	498