

Chemical Bonding

Ionic Bond

Results from the transfer of one or more electrons from one atom to another.

Ionic Bonds

Electrostatic attractions between ions

Increase charge – remove an electron

Decrease charge – add an electron

lons: atoms which have an electrical charge

- Cations forms when a neutral atom loses one or more valence electrons
- Anions forms when a neutral atom gains one or more valence electrons

Ionic Compounds

- Formed by ionic bonds
- Usually form between a metal and nonmetal
- Tend to form noble gas(octet) electron configurations
- Lattice energy The energy required to separate exactly 1 mole of the solid into its component gaseous ions.

Ionic Compounds

- Formed by ionic bonds
- Usually form between a metal and nonmetal
- Tend to form noble gas electron configurations
- Lattice energy The energy required to separate exactly 1 mole of the solid into its component gaseous ions.

It is the loss, gain, or sharing of valence electrons that determines how elements react.

Ionization Energy

$X + energy \rightarrow X^+ + e^-$

First Ionization Energies (KJ/mol)

								_										
>	¥ 310				Incr	eases	s thro	ough a	a per	iod					•			He 2370
a tamil	Li 520	Be 900											В 800	C 1090	N 1400	O 1310	F 1680	Ne 2080
e ubno	Na 490	Mg 730											Al 580	Si 780	P 1060	S 1000	C1 1250	Ar 1520
es thr	К 420	Ca 590	Sc 630	Ti 660	V 650	Cr 660	Mn 710	Fe 760	Co 760	Ni 730	Cu 740	Zn 910	Ga 580	Ge 780	As 960	Se 950	Br 1140	Kr 1350
screas	Rb 400	Sr 550	Y 620	Zr 660	NЪ 670	Mo 680	Тс 700	Ru 710	Rh 720	Pd 800	Ag 730	Cd 870	In 560	Sn 700	SЪ 830	Te 870	I 1010	Xe 1170
č	Cs 380	Ba 500	La 540	Hf 700	Ta 760	W 770	Re 760	Os 840	Ir 890	Pt 870	Au 890	Hg 1000	T1 590	Рb 710	Bi 800	Po 810	At 	Rn 1030
	Fr	Ra 510																

ELECTRON CONFIG	JRATIONS AN	ID IONIZATIC	ON ENERGIES
OF SODIUM,	MAGNESIUM	, AND ALUM	INUM

Elements	Electron	ab saadiga ta	<i>Ionization energy</i>							
	configuration	ah saadiga ta ta	(kcal/mole)							
		1st electron	2nd electron	3nd electron	4th electron					
Na	$1s^22s^22p^63s^1$	119	109 0	1652	2281					
Mg	$1s^{-2s^{-}2p^{\circ}3s^{-}}$	176	347	1040	2519					
Al	$1s^{2}2s^{2}2p^{6}3s^{2}3p^{1}$		434	656	2767					

Electron Affinity

$X + e^{-} \rightarrow X^{-} + energy$

Electron Affinities (KJ/mol)

1A							8A
Н							He
-72	2A	ЗA	4A	5A	6A	7A	+20 ^a
Li	Be	В	С	N	О	f	Ne
-60	+240 ^a	-23	-123	0	-141	-322	+30
Na	Mg	AI	Si	Р	S	CI	Ar
-53	+230 ^a	-44	-120	-74	-201	-348	+35 ^a
к	Са	Ga	Ge	As	Se	Br	Kr
-48	+150 ^a	-40 ^a	-116	-77	-195	-324	+40 ^a
Rb	Sr	In	Sn	Sb	Те	I.	Xe
-46	+160 ^a	-40 ^a	-121	-101	-190	-295	+40 ^a
Cs	Ва	ТІ	Pb	Bi	Po	At	Rn
-45	+ 50 ^a	-50	-101	-101	-170 ^a	-270 ^a	+40 ^a

^a Calculated value.

Na + 490 KJ/mol \rightarrow Na⁺ + e⁻ Cl + e⁻ \rightarrow Cl⁻ + 348 KJ/mol Na⁺ + Cl⁻ \rightarrow NaCl + 769 KJ/mol

 $Na + Cl \rightarrow NaCl + 627 \text{ KJ/mol}$

Electron Configurations of Ions & Lewis Structures of Ionic Compounds

Covalent Bonds

A bond resulting from the sharing of electrons (usually two).

Molecule

The unit of matter resulting from atoms joined by covalent bonds.

Covalent Bonds

The sharing of valence electrons

$\begin{array}{c|c} \textbf{O} \quad [\text{He}] \underbrace{\uparrow \downarrow}_{2s} & \underbrace{\uparrow \downarrow}_{1s} \underbrace{\uparrow \downarrow}_{1s} \underbrace{\uparrow \downarrow}_{1s} \\ 2s & 2p \end{array}$

Covalent Bonding

- Sharing of valence electrons due to an overlapping of singlet orbitals.
- Usually occur between nonmetals.
- Forms a strong bond holding atoms together to form single units called molecules.
- □ Types of bonds: single, double, & triple

Covalent Bonding

- Sharing of valence electrons due to an overlapping of orbitals.
- Usually occur between nonmetals.
- Forms a strong bond holding atoms together to form single units called molecules.
- □ Types of bonds: single, double, & triple

Electronegativity

-							- Incre	asing	elect	roneg	ativity						*	
					H 2.1													
	Li 1 D	Ве 1.5		B C N O F 20 25 30 35 40														
jativity -	Na 0.9	Mg 12											AI 15	Si 18	P 2.1	S 2.5	CI 3D	
etroneç	K 0.8	Ca 1D	Sc 13	Ti 15	V 16	Cr 1.6	Mn 15	Fe 1.8	Co 19	Ni 1.9	Cu 19	Zn 18	Ga 18	Ge 18	As 20	Se 2.4	Br 2.8	
ising ele	Rb 0.8	Sr 10	Y 12	Zr 1.4	Nb 18	M o 1.8	TC 1.9	Ru 22	Rh 22	Pd 22	Ag 1.9	Cd 1.7	ln 17	Sn 18	Sb 19	Те 2.1	 2.5	
Decrea	Cs 0.7	Ва 0.9	La-Lu 10-1.2	Hf 13	Ta 15	W 1.7	Re 19	0 s 2 2	lr 2.2	Pt 22	Au 2,4	Hg 19	TI 1.8	Pb 19	Ві 1.9	Ро 20	At 22	
¥	Fr 0.7	Ra 09	Ac 1.1	Th 13	Pa 1.4	U 1.4	Np-No 1.4-1.3											

÷ ÷ Ĺ

Electronegativity Differences between Bonding Atoms

% ionic character of bond A – B = $\frac{X_A - X_B}{X_A} \times 100\%$

Since:

Then:

% ionic character of bond H - O = 40%

Electronegativity Differences between Bonding Atoms

					H 2.1													
	Li 10	Ве 15											B 20	C 25	N 30	O 3.5	F 40	
ativity -	Na 0.9	Mg 12		AI Si P S 1 15 18 2.1 2.5 2														
ctroneg	K 0.8	Ca 1D	8c 13	Ti 1.5	V 1.6	Cr 1.6	Mn 15	Fe 1.8	Co 1.9	Ni 1.9	Cu 1,9	Zn 18	Ga 1.6	Ge 18	As 20	Se 2.4	Br 28	
sing ele	Rb 0.8	Sr 10	Y 12	Zr 1.4	Nb 1.6	M O 1.8	TC 1.9	Ru 22	Rh 22	Pd 22	Ag 19	Cd 1.7	in 1.7	Sn 18	Sb 19	Те 2.1	 2.5	
uecrea	Cs 0.7	Ва 0,9	La-Lu 10-1.2	Hf 13	Та 15	W 1.7	Re 1.9	0s 22	lr 22	Pt 22	Au 2.4	Hg 1.9	TI 1.8	Pb 19	Ві 1.9	Ро 20	At 22	
ţ	Fr 0.7	Ra 09	Ac 1.1	Th 13	Ра 14	U 1.4	Np-No 1.4-1.3											

Increasing electronegativity

Lewis Structures (Electron-Dot)

- Determine the total number of valence electrons in the molecule or ion
 - Molecules: add the number of valence electrons on each atom in the molecule
 - Anions: add the number of valence electrons on the atoms in the ion and the number of negative charges on the ion
 - Cations: add the number of valence electrons on the atoms in the ion and then subtract the number of positive charges on the ion

- Draw a skeleton of the molecule or ion, showing the arrangement of atoms, and connect each atom to another with a single bond.
- Deduct the 2 valence electrons for each bond.
- Distribute the remaining electrons as unshared pairs so that each atom has 8 electrons if possible.

Lewis Structures: Ammonia

Lewis Structures: Water

Lewis Structures

Noble Gas Configuration vs nonNoble Gas Configuration

Oxidation State (Number) or Valence Number

A hypothetical charge an atom would have if the electrons in each bond were located on the more electronegative atom.

If two or more Lewis structures with the same arrangement of atoms can be written for a molecule or ion, then the actual electron distribution is an average of that shown by the various Lewis structures.

Bond Dissociation Energy

The energy required to break a specific covalent bond in exactly 1 mole of gaseous molecules.

Bond Dissociation Energy

$H_{2(g)} \rightarrow 2H_{(g)} \qquad \Delta H_{298}^o = 436 kJ$

$XY_{(g)} \to X_{(g)} + Y_{(g)} \qquad D_{x-y} = \Delta H_{298}^{o}$

Calculation of Enthalpy Change

$\Delta H = \sum D_{bonds \ broken} - \sum D_{bonds \ formed}$

	Single Bonds														
H 436	C 415 345	N 390 290 160	0 464 350 200 140	F 569 439 270 185 160	Si 395 360 370 540 230	P 320 265 210 350 489 215 215	S 340 260 285 225 230 215	Cl 432 330 200 205 255 359 330 250 243	Br 370 275 245 235 290 270 215 220 190	 295 240 200 215 215 210 180 150	H C N O F S P S C Br -				

				Multiple	Bonds				
$\overline{C = C_i}$	611	C = N,	615	C = O,	741	N = N,	418	O = O,	498
C≡C,	837	C≡N,	891	C≡O,	1080	N≡N,	946		

